Chemical elements
    Physical Properties
    Chemical Properties
      Tetramethyl Stannane
      Methyl stannic chloride
      Tin Tetra-ethyl
      Tin Tri-ethyl
      Stannous Fluoride
      Stannic Fluoride
      Sodium Stannifluoride
      Potassium Stannifluoride
      Ammonium Stannifluoride
      Stannous Chloride
      Stannic Chloride
      Stannous Bromide
      Stannic Bromide
      Stannous Iodide
      Stannic Iodide
      Mixed Stannic Halides
      Stannous Oxide
      Stannous Hydroxide
      Stannic Oxide
      Potassium Stannate
      Stannic Acid and its Derivatives
      Parastannic Acid
      Stannyl Chloride
      Parastannyl Chloride
      Stannous Sulphide
      Stannic Sulphide
      Stannic Oxysulphide
      Stannic Iodosulphide
      Stannous Sulphate
      Stannic Sulphate
      Stannic Nitrate
      Stannous Nitrate
      Stannioxalic Acid
      Stannous Tartrate
      Tin and Silicon
      Stannous Tungstate
    PDB 3e94-3kwy


Phosphor-tin, made by adding phosphorus to molten tin, is largely employed in the preparation of phosphor-bronze. It is characterised by extreme brittleness and brilliant fracture; and microscopic examination of its surface shows it to be traversed by numerous intercepting straight lines, between which is a softer matrix. By treatment of the alloy with dilute nitric acid the matrix is removed, and a phosphide of tin in the form of white, shining plates remains, which is found to have the composition Sn3P2. When this compound is heated in hydrogen some of the phosphorus is removed, and when it is acted upon by concentrated hydrochloric acid spontaneously inflammable phosphine is liberated. If the phosphide Sn3P2 is heated alone it loses some phosphorus, yielding a lower phosphide of the composition Sn9P, which may also be obtained by the union of phosphorus with spongy tin. When, however, finely divided tin is heated in phosphorus vapour, the compound SnP is obtained as a white, brittle mass.

Stannic Phosphate or Pyrophosphate is a solid of rather indefinite composition formed by the combination of phosphoric and β-stannic acids. The formation of this substance serves to separate phosphoric acid from a nitric acid solution, and is sometimes employed for this purpose in qualitative analysis. Tin-foil is added to the nitric acid solution of a mixture containing phosphate, and all the phosphoric acid enters into combination with the β-stannic acid as it is formed, so that the solution is freed from phosphate.

There is metallographic evidence of the existence of the following arsenides of tin:

Sn3As2, Sn4As3, SnAs.

© Copyright 2008-2012 by