Atomistry » Tin » Chemical Properties » Stannioxalic Acid
Atomistry »
  Tin »
    Chemical Properties »
      Stannioxalic Acid »

Stannioxalic Acid

It was shown by Hansemann and Lowenthal that freshly precipitated stannic hydroxide is freely soluble in oxalic acid solution, and that when this solution is evaporated a gummy mass remains; and Pechard, by dissolving stannic hydroxide in potassium hydrogen oxalate solution obtained monoclinic crystals, to which he attributed the formula K2O.SnO2.2C2O3.7H2O. Rosenheim and Platsch isolated, however, in the same way, crystals having the composition 3K2O.2SnO2.7C2O3.5H2O, and showed that a solution of this substance gives the reactions neither of tin nor of oxalic acid. It is, therefore, the potassium salt of a complex stannioxalic acid. The barium salt, 2BaO.SnO2.4C2O3.2H2O, obtained by adding barium chloride to a solution of the potassium salt, forms insoluble white needles. The free acid could not be obtained; attempts to isolate it yielded mixtures of colloidal stannic acid and oxalic acid. This power of stannic tin to combine with oxalic acid furnishes a means for the analytical separation of the metal.

Last articles

Zn in 7VD8
Zn in 7V1R
Zn in 7V1Q
Zn in 7VPF
Zn in 7T85
Zn in 7T5F
Zn in 7NF9
Zn in 7M4M
Zn in 7M4O
Zn in 7M4N
© Copyright 2008-2020 by
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy