Chemical elements
    Physical Properties
    Chemical Properties
      Tetramethyl Stannane
      Methyl stannic chloride
      Tin Tetra-ethyl
      Tin Tri-ethyl
      Stannous Fluoride
      Stannic Fluoride
      Sodium Stannifluoride
      Potassium Stannifluoride
      Ammonium Stannifluoride
      Stannous Chloride
      Stannic Chloride
      Stannous Bromide
      Stannic Bromide
      Stannous Iodide
      Stannic Iodide
      Mixed Stannic Halides
      Stannous Oxide
      Stannous Hydroxide
      Stannic Oxide
      Potassium Stannate
      Stannic Acid and its Derivatives
      Parastannic Acid
      Stannyl Chloride
      Parastannyl Chloride
      Stannous Sulphide
      Stannic Sulphide
      Stannic Oxysulphide
      Stannic Iodosulphide
      Stannous Sulphate
      Stannic Sulphate
      Stannic Nitrate
      Stannous Nitrate
      Stannioxalic Acid
      Stannous Tartrate
      Tin and Silicon
      Stannous Tungstate
    PDB 3e94-3kwy

Stannioxalic Acid

It was shown by Hansemann and Lowenthal that freshly precipitated stannic hydroxide is freely soluble in oxalic acid solution, and that when this solution is evaporated a gummy mass remains; and Pechard, by dissolving stannic hydroxide in potassium hydrogen oxalate solution obtained monoclinic crystals, to which he attributed the formula K2O.SnO2.2C2O3.7H2O. Rosenheim and Platsch isolated, however, in the same way, crystals having the composition 3K2O.2SnO2.7C2O3.5H2O, and showed that a solution of this substance gives the reactions neither of tin nor of oxalic acid. It is, therefore, the potassium salt of a complex stannioxalic acid. The barium salt, 2BaO.SnO2.4C2O3.2H2O, obtained by adding barium chloride to a solution of the potassium salt, forms insoluble white needles. The free acid could not be obtained; attempts to isolate it yielded mixtures of colloidal stannic acid and oxalic acid. This power of stannic tin to combine with oxalic acid furnishes a means for the analytical separation of the metal.

© Copyright 2008-2012 by