Chemical elements
  Tin
    Isotopes
    Energy
    Production
    Application
    Physical Properties
    Chemical Properties
      Tetramethyl Stannane
      Methyl stannic chloride
      Tin Tetra-ethyl
      Tin Tri-ethyl
      Stannous Fluoride
      Stannic Fluoride
      Sodium Stannifluoride
      Potassium Stannifluoride
      Ammonium Stannifluoride
      Stannous Chloride
      Stannic Chloride
      Chlorostannates
      Stannous Bromide
      Stannic Bromide
      Stannous Iodide
      Stannic Iodide
      Mixed Stannic Halides
      Stannous Oxide
      Stannous Hydroxide
      Stannic Oxide
      Potassium Stannate
      Stannic Acid and its Derivatives
      Parastannic Acid
      Stannyl Chloride
      Parastannyl Chloride
      Stannous Sulphide
      Stannic Sulphide
      Stannic Oxysulphide
      Stannic Iodosulphide
      Stannous Sulphate
      Stannic Sulphate
      Stannic Nitrate
      Stannous Nitrate
      Phosphor-tin
      Stannioxalic Acid
      Stannous Tartrate
      Tin and Silicon
      Stannous Tungstate
    PDB 3e94-3kwy

Stannous Hydroxide






The white precipitate obtained by adding alkali hydroxide or carbonate solution to stannous chloride is said not to be Sn(OH)2, but to have the composition 2SnO.H2O. If this precipitate is heated above 80° C. it loses water, and passes into the anhydrous oxide. The hydroxide dissolves in excess of alkali producing a solution of alkali stannite, which, according to Hantzsch, is not Sn(ONa)2, but H.SnO.ONa, there being no ground for assuming the existence of SnO2' ions. Thus tin becomes quadrivalent in stannites, and the hydroxide is a feeble acid of the type of formic acid.

This conclusion in regard to constitution, which applies to the hydroxides of zinc, glucinum, lead, tin, and germanium, is based upon measurements of the conductivities of their alkaline solutions, and the rate at which these solutions hydrolyse ethyl acetate. The metals are named in the order of increasing acidic strength of their hydroxides. It is interesting to remember that carbon monoxide combines similarly with alkali:

CO + NaOHHCOONa,

and that there are other acids probably constituted in an analogous manner, so that the maximum valency of the nuclear atoms is reached, e.g. HSO2OH, H2POOH, and HPO(OH)2. It may be remarked, however, that this constitution of stannites involves the union of a hydrogen and a tin atom, otherwise unknown. The reducing action of sodium stannite solution has been studied by Goldschmidt and Eckardt, who agree with Hantzsch in regard to the constitution of this salt.


© Copyright 2008-2012 by atomistry.com