Atomistry » Tin » Chemical Properties » Stannioxalic Acid
Atomistry »
  Tin »
    Chemical Properties »
      Stannioxalic Acid »

Stannioxalic Acid

It was shown by Hansemann and Lowenthal that freshly precipitated stannic hydroxide is freely soluble in oxalic acid solution, and that when this solution is evaporated a gummy mass remains; and Pechard, by dissolving stannic hydroxide in potassium hydrogen oxalate solution obtained monoclinic crystals, to which he attributed the formula K2O.SnO2.2C2O3.7H2O. Rosenheim and Platsch isolated, however, in the same way, crystals having the composition 3K2O.2SnO2.7C2O3.5H2O, and showed that a solution of this substance gives the reactions neither of tin nor of oxalic acid. It is, therefore, the potassium salt of a complex stannioxalic acid. The barium salt, 2BaO.SnO2.4C2O3.2H2O, obtained by adding barium chloride to a solution of the potassium salt, forms insoluble white needles. The free acid could not be obtained; attempts to isolate it yielded mixtures of colloidal stannic acid and oxalic acid. This power of stannic tin to combine with oxalic acid furnishes a means for the analytical separation of the metal.

Last articles

Zn in 9MJ5
Zn in 9HNW
Zn in 9G0L
Zn in 9FNE
Zn in 9DZN
Zn in 9E0I
Zn in 9D32
Zn in 9DAK
Zn in 8ZXC
Zn in 8ZUF
© Copyright 2008-2020 by atomistry.com
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy